

Section D

Rule-based Systems

KBS architecture

KBS architecture (1)

 The typical architecture of an KBS is often

described as follows:

user
user

interface

inference

engine

knowledge

base

KBS architecture (1)

 The inference engine and knowledge

base are separated because:

 the reasoning mechanism needs to be as

stable as possible;

 the knowledge base must be able to grow

and change, as knowledge is added;

 this arrangement enables the system to be

built from, or converted to, a shell.

KBS architecture (2)

 It is reasonable to produce a richer,

more elaborate, description of the typical

KBS.

 A more elaborate description, which still

includes the components that are to be

found in almost any real-world system,

would look like this:

KBS architecture (2)

KBS architecture (2)

KBS architecture (2)

The system holds a collection of general

principles which can potentially be applied to

any problem - these are stored in the

knowledge base.

The system also holds a collection of specific

details that apply to the current problem

(including details of how the current

reasoning process is progressing) - these are

held in working memory.

Both these sorts of information are processed

by the inference engine.

KBS architecture (2)

KBS architecture (2)

 Any practical expert system needs an

explanatory facility. It is essential that an

expert system should be able to explain

its reasoning. This is because:

 it gives the user confidence in the

system;

 it makes it easier to debug the system.

KBS architecture (2)

KBS architecture (2)

 It is not unreasonable to include an

expert interface & a knowledge base

editor, since any practical KBS is going

to need a mechanism for efficiently

building and modifying the knowledge

base.

KBS architecture (2)

 As mentioned earlier, a reliable expert

should be able to explain and justify

his/her advice and actions.

Rule-based reasoning

Rule-based reasoning

 One can often represent the expertise

that someone uses to do an expert task

as rules.

 A rule means a structure which has an if

component and a then component.

 This is actually a very old idea indeed -

The Edwin Smith papyrus

 The Edwin Smith papyrus is a 3700-

year-old ancient Egyptian text.

ABCDEECDBBACDACDBCDECDADCADBADE

ECDBBACDACDBCDECDADCADBADCDBBACDA

BCDEECDBBACDACDBCDECDAD

BBACDACDBCDECDADCADBADEDCDBBA

DCDBBADCDBBABCDECDADCADBADEACDA

BACDACDBCDECDADBACDACDBCDECDAD

The Edwin Smith papyrus

 It contains medical descriptions of 48

different types of head wound.

 There is a fixed format for each problem

description: Title - symptoms - diagnosis

- prognosis - treatment.

The Edwin Smith papyrus

 There's a fixed style for the parts of each

problem description. Thus, the

prognosis always reads "It is an injury

that I will cure", or "It is an injury that I

will combat", or "It is an injury against

which I am powerless".

 An example taken from the Edwin Smith

papyrus:

The Edwin Smith papyrus

Title:

Instructions for treating a fracture of the

cheekbone.

Symptoms:

If you examine a man with a fracture of the

cheekbone, you will find a salient and

red fluxion, bordering the wound.

The Edwin Smith papyrus

Diagnosis and prognosis:

Then you will tell your patient: "A fracture of

the cheekbone. It is an injury that I will

cure."

Treatment:

You shall tend him with fresh meat the first

day. The treatment shall last until the fluxion

resorbs. Next you shall treat him with

raspberry, honey, and bandages to be

renewed each day, until he is cured.

Rule-based reasoning: rules

 examples:

if - the leaves are dry, brittle and

discoloured

then - the plant has been attacked by red

spider mite

if - the customer closes the account

then - delete the customer from the

database

Rule-based reasoning: rules

 The statement, or set of statements,

after the word if represents some pattern

which you may observe.

 The statement, or set of statements,

after the word then represents some

conclusion that you can draw, or some

action that you should take.

Rule-based reasoning: rules

 A rule-based system, therefore, either

 identifies a pattern and draws

conclusions about what it means,

or

 identifies a pattern and advises what

should be done about it,

or

 identifies a pattern and takes

appropriate action.

Rule-based reasoning: rules

 The essence of a rule-based reasoning system is

that it goes through a series of cycles.

 In each cycle, it attempts to pick an appropriate rule

from its collection of rules, depending on the

present circumstances, and to use it as described

above.

 Because using a rule produces new information, it's

possible for each new cycle to take the reasoning

process further than the cycle before. This is rather

like a human following a chain of ideas in order to

come to a conclusion.

Terminology

 A rule as described above is often

referred to as a production rule.

 A set of production rules, together with

software that can reason with them, is

known as a production system.

Terminology

 There are several different terms for the statements

that come after the word if, and those that come after

the word then.

 The statements after if may be called the

conditions, those after then may be called the

conclusions.

 The statements after if may be called the premises,

those after then may be called the actions.

 The statements after if may be called the

antecedents, those after then may be called the

consequents.

Terminology

 Some writers just talk about the if-part and the

then-part.

Terminology

 If a production system chooses a

particular rule, because the conditions

match the current state of affairs, and

puts the conclusions into effect, this is

known as firing the rule.

Terminology

 In a production system, the rules are

stored together, in an area called the

rulebase.

Historical note

 Mathematicians, linguists, psychologists

and artificial intelligence specialists

explored the possibilities of production

rules during the 40s, 50s and 60s.

 When the first expert systems were

invented in the 70s, it seemed natural to

use production rules as the knowledge

representation formalism for the

knowledge base.

Historical note

 Production rules have remained the

most popular form of knowledge

representation for expert systems ever

since.

Conditional branching

 Is a production rule the same as a

conditional branching statement?

 A production rule looks similar to the

if (statement to be evaluated) then (action)

pattern which is a familiar feature of all

conventional programming languages.

Conditional branching

 e.g. The following fragment from a C

program:

Conditional branching

{ int magic;

 int guess;

 magic = rand();

 printf(“guess the magic number: ”);

 scanf(“%d”, &guess);

 if (guess == magic) printf(“** Right **”);

 else {

 printf(“Wrong, ”);

 if (guess > magic) printf(“too high”);

 else printf(“too low”);

 }

}

Conditional branching vs. production
rules

 However, the similarity is misleading.

There is a radical difference between a

production system and a piece of

conventional software.

 In a conventional program, the

if...then... structure is an integral part

of the code, and represents a point

where the execution can branch in

one of two (or more) directions.

Conditional branching vs. production
rules

 In a production system, the if...then...

rules are gathered together in a rule

base, and the controlling part of the

system has some way of choosing a

rule from this knowledge base which

is appropriate to the current

circumstances, and then using it.

Reasoning with production rules

 The statements forming the conditions,

or the conclusions, in such rules, may

be structures, following some syntactic

convention (such as three items

enclosed in brackets).

Reasoning with production rules

 Very often, these structures will include

variables - such variables can, of

course, be given a particular value, and

variables with the same name in the

same rule will share the same value.

Reasoning with production rules

 For example (assuming words beginning

with capital letters are variables, and

other words are constants):

 if [Person, age, Number] &

 [Person, employment, none] &

 [Number, greater_than, 18] &

 [Number, less_than, 65]

 then [Person, can_claim,

 unemployment_benefit].

Reasoning with production rules

 Architecture of a typical production

system:

rule

memory
Inference
engine

working

memory

observed data

fire

modify select

output

Reasoning with production rules

 Architecture of a typical production

system:

rule

memory
interpreter

working

memory

New information

fire

modify select

output

Reasoning with production rules

 Architecture of a typical production

system:

rule

memory
interpreter

working

memory

New information

fire

modify

select

output

Reasoning with production rules

 Architecture of a typical production

system:

rule

memory

Inference

engine

executes

actions

working

memory

New information

fire

modify
select

output

Reasoning with production rules

 Architecture of a typical production

system:

rule

memory

Inference

engine

executes

actions

working

memory

New information

fire

modify select

output

Reasoning with production rules

 Architecture of a typical production

system:

rule

memory
interpreter

working

memory

New information

fire

modify

select

output

Reasoning with production rules

 Architecture of a typical production

system:

rule

memory

Inference
engine

 executes
actions

working

memory

New information

fire

modify
select

output

Reasoning with production rules

 Architecture of a typical production

system:

rule

memory

Inference
engine

executes

actions

working

memory

New information

fire

modify select

output

Architecture of a typical production system

 Has a working memory.

Holds items of data. Their presence, or

their absence, causes the inference

engine to trigger certain rules.

 e.g. W.M. contains [john, age, 29] &

[john, employment, none]

 The system decides: does this match

any rules in the rulebase? If so, choose

the rule.

Architecture of a typical production system

 has an inference engine. Behaviour of

the inference engine :

 the system is started by putting a

suitable data item into working memory.

 recognise-act cycle: when data in the

working memory matches the conditions

of one of the rules in the system, the rule

fires (i.e.is brought into action).

Advantages of production
systems ... at first glance

 The principle advantage of production

rules is notational convenience - it’s

easy to express suitable pieces of

knowledge in this way.

 The principle disadvantage of production

rules is their restricted power of

expression - many useful pieces of

knowledge don’t fit this pattern.

Advantages of production
systems ... at first glance

 This would seem to be a purely declarative

form of knowledge representation. One

gathers pieces of knowledge about a

particular subject, and puts them into a

rulebase. One doesn't bother about when or

how or in which sequence the rules are used;

the production system can deal with that.

 When one wishes to expand the knowledge,

one just adds more rules at the end of the

rulebase.

Advantages of production
systems ... at first glance

 The rules themselves are very easy to

understand, and for someone (who is expert

in the specific subject the system is

concerned with) to criticise and improve.

Advantages of production
systems ... at first glance

 It's fairly straightforward to implement a

production system interpreter. Following the

development of the Rete Matching

Algorithm, and other improvements, quite

efficient interpreters are now available.

Advantages of production
systems ... at first glance

 However, it isn't that simple. See

"advantages reconsidered" later on.

Operation of a production system
in more detail

 The recognise-act cycle (forward-chaining):

 Halt

 yes

 no

Has

the rule

got the

command

"halt" at

 Produce some output

 Put the right-hand side

 of the rule into effect,

 using the information

 from working memory

 Halt

 Pick rules on the

 basis of what's in

 working memory

 Set the cycle going

 Put the word "start"

 in working memory

Use conflict resolution

strategy to cut this

down to one rule. the

 end?

Any

rules

eligible

to fire

?

 no

 yes
Information

sources & recipients

 the working

 user memory

Operation of a production system
in more detail

 The recognise-act cycle (forward-chaining):

 Halt

 yes

 no

Has

the rule

got the

command

"halt" at

 Produce some output

 Put the right-hand side

 of the rule into effect,

 using the information

 from working memory

 Halt

 Pick rules on the

 basis of what's in

 working memory

 Set the cycle going

 Put the word "start"

 in working memory

Use conflict resolution

strategy to cut this

down to one rule. the

 end?

Any

rules

eligible

to fire

?

 no

 yes
Information

sources & recipients

 the working

 user memory

Operation of a production system
in more detail

 The recognise-act cycle (forward-chaining):

 Halt

 yes

 no

Has

the rule

got the

command

"halt" at

 Produce some output

 Put the right-hand side

 of the rule into effect,

 using the information

 from working memory

 Halt

 Pick rules on the

 basis of what's in

 working memory

 Set the cycle going

 Put the word "start"

 in working memory

Use conflict resolution

strategy to cut this

down to one rule. the

 end?

Any

rules

eligible

to fire

?

 no

 yes
Information

sources & recipients

 the working

 user memory

Operation of a production system
in more detail

 The recognise-act cycle (forward-chaining):

 Halt

 yes

 no

Has

the rule

got the

command

"halt" at

 Produce some output

 Put the right-hand side

 of the rule into effect,

 using the information

 from working memory

 Halt

 Pick rules on the

 basis of what's in

 working memory

 Set the cycle going

 Put the word "start"

 in working memory

Use conflict resolution

strategy to cut this

down to one rule. the

 end?

Any

rules

eligible

to fire

?

 no

 yes
Information

sources & recipients

 the working

 user memory

Operation of a production system
in more detail

 The recognise-act cycle (forward-chaining):

 Halt

 yes

 no

Has

the rule

got the

command

"halt" at

 Produce some output

 Put the right-hand side

 of the rule into effect,

 using the information

 from working memory

 Halt

 Pick rules on the

 basis of what's in

 working memory

 Set the cycle going

 Put the word "start"

 in working memory

Use conflict resolution

strategy to cut this

down to one rule. the

 end?

Any

rules

eligible

to fire

?

 no

 yes
Information

sources & recipients

 the working

 user memory

Operation of a production system
in more detail

 The recognise-act cycle (forward-chaining):

 Halt

 yes

 no

Has

the rule

got the

command

"halt" at

 Produce some output

 Put the right-hand side

 of the rule into effect,

 using the information

 from working memory

 Halt

 Pick rules on the

 basis of what's in

 working memory

 Set the cycle going

 Put the word "start"

 in working memory

Use conflict resolution

strategy to cut this

down to one rule. the

 end?

Any

rules

eligible

to fire

?

 no

 yes
Information

sources & recipients

 the working

 user memory

Operation of a production system
in more detail

 The recognise-act cycle (forward-chaining):

 Halt

 yes

 no

Has

the rule

got the

command

"halt" at

 Produce some output

 Put the right-hand side

 of the rule into effect,

 using the information

 from working memory

 Halt

 Pick rules on the

 basis of what's in

 working memory

 Set the cycle going

 Put the word "start"

 in working memory

Use conflict resolution

strategy to cut this

down to one rule. the

 end?

Any

rules

eligible

to fire

?

 no

 yes
Information

sources & recipients

 the working

 user memory

Operation of a production system
in more detail

 The recognise-act cycle (forward-chaining):

 Halt

 yes

 no

Has

the rule

got the

command

"halt" at

 Produce some output

 Put the right-hand side

 of the rule into effect,

 using the information

 from working memory

 Halt

 Pick rules on the

 basis of what's in

 working memory

 Set the cycle going

 Put the word "start"

 in working memory

Use conflict resolution

strategy to cut this

down to one rule. the

 end?

Any

rules

eligible

to fire

?

 no

 yes
Information

sources & recipients

 the working

 user memory

The recognise-act cycle

 N.B. "right-hand side of the rule" means

the part after the word then.

The recognise-act cycle

 conflict resolution strategy: if more than

one rule matches working memory

contents, this decides which one is to

fire. Alternatively, the rule base could be

designed so there's never any conflict

(but usually isn't).

The recognise-act cycle

 Applying the rule will probably modify

the contents of working memory. Then

the system continues with the

recognise-act cycle.

 The system stops when

 the rules stop firing, or

 a rule fires which specifically tells the

system to halt.

Conflict resolution strategies

 Choice of c.r.s. can make a big

difference to system performance.

 Three favourite strategies:

 Refractoriness: don't allow a rule to fire

twice on same data.

 Recency: take the data which arrived in

working memory most recently, and find a

rule that uses this data.

 Specificity: use the most specific rule (the

one with the most conditions attached).

Conflict resolution strategies

 However, in recent years the fashion (in
expert system shells) has been for very
simple CRSs, coupled with a reluctance
to mention the problem to the potential
system builder.

 Simple strategies:

Give each rule a priority number. If a choice

has to be made, choose the rule with the

highest number.

 If a choice has to be made, choose the rule

that comes first in the rule base.

Advantages of production
systems reconsidered.

 Because of the effect of conflict

resolution strategies, rules interact and

the order of rules matters.

One must go beyond the declarative

meaning of the rules and consider when

(under which circumstances) they will fire.

One cannot properly understand a rule

simply by reading it in isolation; one must

consider the related rules, the meta-rules,

and the conflict resolution strategy as well.

Advantages of production
systems reconsidered.

 For the same reason, attempting to

expand a production system by simply

adding more rules at the end is

dangerous.

Unexpected rule interactions are liable

to happen.

The need to consider all these

possible rule interactions makes large

rule-based systems unwieldy and hard

to update.

Advantages of production
systems reconsidered.

 Although non-computer-specialists find it

easy to grasp the meaning of individual

rules, they don't find it easy to grasp

these issues concerned with

interactions.

Advantages of production
systems reconsidered.

 Although efficient rule interpreters are

available, one may still need to engage

in meta-level programming in order to

achieve a production system that shows

acceptable performance on a large

rulebase.

